Supplementary Publication

Ion microprobe analytical technique

Zircons were separated from several kilograms of sample by conventional means. The sub-300 μ m fraction was processed using a Wilfey table, and then the Wilfey heavies were passed through a Frantz magnetic separator at 1 A. The non-paramagnetic portion was then placed in a filter funnel with di iodomethane. The resulting heavy fraction was then passed again through the Frantz magnetic separator at full current. All zircons were hand picked in ethanol using a binocular microscope. Zircons were mounted in a resin disk along with the zircon standard and polished to reveal the grain interiors. The mounts were gold-coated and imaged with a Hitachi S-4300 scanning electron microscope (SEM), using a cathodoluminescence probe (CL) to image internal structures, overgrowths and zonation. Secondary electron mode (SE) imaging was employed to detect fractures and inclusions within the grains.

U–Th–Pb zircon analyses were performed on a Cameca IMS 1270 ion-microprobe following methods described by Whitehouse & Kamber (2005) which were modified from Whitehouse *et al.* (1999). U/Pb ratio calibration was based on analyses of the Geostandards zircon 91500, which has an age of 1065.4 \pm 0.3 Ma and U and Pb concentrations of 80 and 15 ppm, respectively (Wiedenbeck *et al.*, 1995). Replicate analyses of the same domain within a single zircon were used to independently assess the validity of the calibration. Data reduction employed Excel macros developed by Whitehouse at the Swedish Natural History Museum, Stockholm. Age calculations were made using Isoplot version 3.02 (Ludwig, 2003). U–Pb data are plotted as 2σ error ellipses. All age errors quoted in the text are 2σ unless specifically stated otherwise. Common lead corrections were only applied to samples which exhibited significant levels of ²⁰⁴Pb, and where applied are indicated in the data tables. They assume a modern day average terrestrial common Pb composition (Stacey and Kramers, 1975), i.e., ²⁰⁷Pb/²⁰⁶Pb = 0.83. A detailed rationale for choosing present day Pb as a contaminant is given by Zeck and Whitehouse (1999).

LA-MC-ICPMS analytical technique

A c. 12kg sample of Tyrone Central Inlier gneiss (JTP-210) was was crushed and sieved using standard mineral preparation procedures. Heavy minerals were concentrated using a

Wilfley table prior to settling through tetrabromoethane for separation of the heavy mineral concentrate, which was subsequently washed in acetone and dried. Zircons were separated initially by paramagnetic behaviour using a Franz isodynamic separator and then hand-picked from the non-magnetic and least magnetic fractions. The zircon separates were mounted in an araldite resin block and polished prior to laser ablation.

U-Pb zircon analyses were determined by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) at the NERC Isotope Geosciences Laboratory using procedures outlined by Horstwood et al. (2003). This included a correction for common-Pb based on the measurement of ²⁰⁴Pb, using an electron multiplier. Analyses used a Nu-Plasma MC-ICPMS system coupled to a New Wave Research solid-state Nd:YAG laser ablation system (UP193SS). A spot size of either 15 or 25 µm was used, depending on zircon size. Dwell time was 60 seconds, the first 15 seconds of which was not used to avoid any elevated common Pb from surface contamination. Pit depth for the acquisition period was approximately 10-12 μ m. A ²⁰⁵Tl/²³⁵U solution was simultaneously aspirated during analysis, using a Cetac Technologies Aridus desolvating nebulizer, to correct for instrumental mass bias and plasma induced inter-element fractionation. Data were reduced and errors propagated using an in-house spreadsheet calculation package, with ages determined using the Isoplot 3 macro of Ludwig (2003). Between five and ten analyses of the zircon standard 91500 were preformed every hour and used to normalise data. Zircon standards GJ-1 and Mud Tank were run as unknown samples at the start and end of the analytical session to assess overall accuracy and precision. All dates quoted, unless otherwise stated, are 207 Pb/ 206 Pb ages. Only data less than 10% discordant are used. Where there was more than one analysis per grain, the mean ²⁰⁷Pb/²⁰⁶Pb age and error was employed.

Sm-Nd analyses

Analyses were performed on a semi-automated single collector VG Micromass 30 mass spectrometer at the Department of Geology, University College Dublin. ¹⁴³Nd/¹⁴⁴Nd ratios, Sm and Nd concentrations were determined using a mixed ¹⁴⁷Sm-¹⁵⁰Nd spike. ¹⁴³Nd/¹⁴⁴Nd ratios are normalized to ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. ¹⁴³Nd/¹⁴⁴Nd errors are within-run precision and reproducibility is approximately \pm 0.00002, while reproducibility of ¹⁴⁷Sm/¹⁴⁴Nd ratios is typically 0.1%. These analytical errors correspond to typical uncertainties in T_{DM} ages of about 40 Ma. T_{DM} ages were calculated using the depleted mantle curve of DePaolo (1981).

Rb-Sr dating

For Rb-Sr analyses, standard ion exchange methods were used for chemical separation of elements. Samples were loaded on tantalum filaments and were analyzed on a semiautomated single collector VG Micromass 30 mass spectrometer at the Department of Geology, University College Dublin. During the course of analysis, NBS SRM 987 gave 87 Sr/ 86 Sr ratios of 0.71027±5 (n=8, 2 σ) and NBS SRM 607 yielded 87 Rb/ 86 Sr ratios of 8.005±13 (n=7, 2 σ). Sr blanks averaged 1.5 ng and are not significant. 2 σ analytical uncertainties of 1.5% for 87 Rb/ 86 Sr and tabulated values (Table 1) for 87 Sr/ 86 Sr ratios were used in age calculations which employed a value of 0.0142 Ga ${}^{-1}$ for the 87 Rb decay constant (Steiger and Jäger, 1977).

Ar-Ar dating

The muscovite and biotite grains selected for ⁴⁰Ar-³⁹Ar geochronology were irradiated together with the FCT sanidine standard (28.02 Ma; Renne et al., 1998), for 70 hours in the 1MW, Cd-lined CLICIT facility at the University of Oregon. J values were calculated with a precision of 0.05%. The biotites and monitors were analysed at the 40 Ar $-{}^{39}$ Ar geochronology laboratory at the University of Lund. The lab consists of a Micromass 5400 mass spectrometer with a Faraday detector and an electron multiplier, a metal extraction line, containing two SAES C50-ST101 Zr-Al getters and a cold finger cooled to c. -155 °C by a Polycold P100 cryogenic refrigeration unit. Single grains of biotite were step-heated using a defocused 50W CO₂ laser rastered over the samples to provide even-heating of the grain. Samples were measured on the electron multiplier and time zero regressions were fitted to data collected from 10 scans over the mass range of 40-36. Peak heights and backgrounds were corrected for mass discrimination, isotopic decay and interfering nucleogenic Ca-, K-, and Cl-derived isotopes. ⁴⁰Ar blanks were calculated before every new sample and after every three unknown steps. 40 Ar blanks were between 4.0 and 2 x 10⁻¹⁶ moles. Blank values for masses 39–36 were all less than 7 x 10^{-18} moles. Blank values were subtracted for all incremental steps from the sample signal. Age plateaus were determined using the criteria of Dalrymple & Lanphere (1971), which specify the presence of at least three contiguous incremental heating steps with statistically indistinguishable ages that constitute >50% of the total ³⁹Ar released during the experiment.

Electron microprobe analyses

Quantitative microprobe analyses were carried out at the Institute of Mineralogy and Geochemistry at the University of Lausanne, using a Jeol 8200 superprobe with an accelerating voltage of 15 kV, a beam current of 15 nA for feldspars and hydrous phases and a beam current of 20 nA for garnet. A spot size as low as 1 micron was used for anhydrous phases such as garnet, while for feldspars and anhydrous phases such as amphiboles and micas, a beam size of up to 10 microns was used to prevent the loss of volatile elements such as Na and K Data reduction was carried out using ZAF corrections. A set of natural standards was used for calibration.

References

- DALRYMPLE, G. B. & LANPHERE, M. A. 1971. ⁴⁰Ar/³⁹Ar technique of K/Ar dating: a comparison with the conventional techniques. *Earth and Planetary Science Letters* 12, 300.
- DEPAOLO, D. J. 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. *Nature* **291**, 193-196.
- HORSTWOOD, M. S. A., FOSTER, G. L., PARRISH, R. R., NOBLE, S. R. & NOWELL, G. M. 2003. Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS. *Journal of Analytical Atomic Spectroscopy* 18, 837-846.
- LUDWIG, K. R. 2003. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. *Berkeley Geochronology Center Special Publication* **4**, 1–70.
- RENNE, P. R., SWISHER, C. C., DEINO, A. L., KARNER, D. B., OWENS, T. L. & DEPAOLO, D. J. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar39Ar dating. *Chemical Geology* 145, 117-152.
- STACEY, J. S. & KRAMERS, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters* **26**, 207-221.
- WHITEHOUSE, M. J. & KAMBER, B. S. 2005. Assigning dates to thin gneissic veins in highgrade metamorphic terranes: A cautionary tale from Akilia, southwest Greenland. *Journal of Petrology* 46, 291-318.
- WHITEHOUSE, M. J., KAMBER, B. S. & MOORBATH, S. 1999. Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland-a reassessment based on combined ion-microprobe and imaging studies. *Chemical Geology* 160, 201-224.
- WIEDENBECK, M., ALLE, P., CORFU, F., GRIFFIN, W. L., MEIER, M., OBERLI, F., VON QUADT, A., RODDICK, J. C. & SPIEGEL, W. 1995. Three natural zircon standards for U-Th-Pb,

Lu-Hf, trace element and REE analyses. *Geostandards Newsletter* 19, 1-23.

ZECK, H. P. & WHITEHOUSE, M. J. 1999. Hercynian, Pan-African, Proterozoic and Archean ion-microprobe zircon ages for a Betic-Rif core complex, Alpine belt, W Mediterranean-consequences for its P-T-t path. *Contributions to Mineralogy and Petrology* 134, 134-149.

Sample	TCI-8 b49	TCI-8 m39	TCI-8 f152	TCI-8 g638	TCI-8 g651
Position	biotite rim	muscovite rim	plagioclase rim	garnet core	garnet rim
SiO ₂	35.60	46.85	61.48	37.05	36.86
TiO ₂	2.16	0.07	0.00	0.12	0.04
Al_2O_3	19.12	33.96	24.10	20.38	20.10
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00
FeO [*]	20.21	3.17	0.05	32.00	26.66
MgO	8.68	0.61	0.00	3.30	2.62
MnO	0.48	0.02	0.00	2.86	11.19
CaO	0.02	0.01	5.62	3.88	1.83
Na ₂ O	0.06	0.66	8.59	0.00	0.00
K ₂ O	10.02	11.07	0.10	0.00	0.00
Total	96.35	96.42	99.94	99.59	99.30
Si	2.701	3.121	2.775	2.993	3.010
Al	0.123	0.004	1.224	1.940	1.935
Ti	1.710	2.666	0.000	0.008	0.002
Cr	0.000	0.000	0.000	0.000	0.000
Fe ²⁺	1.282	0.177	0.000	2.162	1.821
Mg	0.982	0.061	0.000	0.397	0.319
Mn	0.031	0.001	0.000	0.196	0.774
Ca	0.002	0.001	0.228	0.000	0.000
Na	0.009	0.085	0.760	0.336	0.160
Κ	0.970	0.941	0.009	0.004	0.001
X _{Fe} 2+	0.567	0.743	-	0.845	0.851
			X _{alb} 0.763	X _{alm} 0.700	0.592
			X _{an} 0.228	X _{grs} 0.109	0.052
			X _{Kfs} 0.009	X _{prp} 0.128	0.104
				X _{sps} 0.063	0.252

 Table 1. Representative mineral analyses in oxide wt %

^{*}Total Fe as FeO. Structural formulae normalized to 12 oxygens for garnet, 11 oxygens for biotite and muscovite, and 8 for plagioclase.

TCI-8 garnet zoning profile

Table 2. THERMOCALC averag	er-rivesuus						
Phase	TCI-8						
Garnet							
ру	0.00150						
gr	0.00017						
alm	0.18000						
spss	0.01500						
Muscovite							
mu	0.71000						
pa	0.01900						
fcel	0.05600						
pa	0.44500						
Biotite							
phl	0.03600						
ann	0.06400						
east	0.03600						
Plagioclase							
ab	0.39000						
an	0.73000						
Other	quartz, sillimanite, H ₂ 0						
Results							
$a H_2 0$	1.0						
T (°C)	670						
s.d. (T)	113						
P (kbar)	6.8						
s.d. (P)	1.7						
Correlation	0.73						
Fit	1.54						
No. of reactions	4						
Eliminated	mu, fcel, pa						

 Table 2. THERMOCALC^{*} average P-T results

^{*}Average P-T data calculated with THERMOCALC V3.26 using the November 22, 2003 version of the thermodynamic dataset (Holland & Powell, 1998). Activities calculated using the program AX.

Zircon ID	²⁰⁷ Pb/ ²⁰⁶ Pb	2σ %	²⁰⁷ Pb/ ²³⁵ U	2σ %	206Pb/238U	2σ %	ρ			Age (Ma)				%
								²⁰⁷ Pb/ ²⁰⁶ Pb	2σ	206Pb/238U	2σ	²⁰⁷ Pb/ ²³⁵ U	2σ	discordance
Z1_1	0.07335	2.82	1.75232	3.57	0.17326	2.18	0.611	1023.7	57.1	1030.0	24.3	1028.0	61.6	-0.6
Z1_2	0.07448	0.94	1.81729	2.14	0.17695	1.93	0.899	1054.6	18.9	1050.3	21.9	1051.7	38.8	0.4
Z1_3_S	0.07454	0.55	1.79087	2.39	0.17424	2.33	0.973	1056.2	11.1	1035.4	26.1	1042.1	42.6	2.0
Z1_4	0.07370	1.90	1.80887	2.87	0.17802	2.16	0.751	1033.1	38.3	1056.1	24.7	1048.7	51.4	-2.2
Z1_5	0.07459	0.79	1.80844	2.06	0.17585	1.90	0.923	1057.4	15.9	1044.3	21.5	1048.5	37.1	1.2
Z2_1	0.09245	0.80	3.13257	2.02	0.24576	1.85	0.917	1476.6	15.3	1416.6	29.2	1440.7	62.2	4.1
Z2_2	0.09330	0.84	3.25793	2.11	0.25326	1.93	0.917	1493.9	15.9	1455.3	31.4	1471.1	67.4	2.6
Z2_3	0.09286	0.75	3.30290	2.22	0.25797	2.09	0.941	1485.0	14.3	1479.4	34.7	1481.7	71.9	0.4
Z2_4	0.09271	0.64	3.31404	2.32	0.25925	2.23	0.961	1482.0	12.1	1486.0	37.2	1484.4	75.2	-0.3
Z2_5	0.09224	0.75	3.22662	2.11	0.25371	1.97	0.935	1472.3	14.2	1457.6	32.1	1463.6	66.8	1.0
Z3_1	0.07449	1.18	1.87311	2.78	0.18237	2.51	0.904	1054.8	23.9	1079.9	29.4	1071.6	51.5	-2.4
Z3_2	0.07464	1.51	1.86421	2.87	0.18113	2.44	0.851	1058.9	30.3	1073.2	28.4	1068.5	52.9	-1.3
Z3_3	0.07458	1.61	1.89179	3.04	0.18397	2.58	0.848	1057.2	32.5	1088.6	30.5	1078.2	56.8	-3.0
Z3_4	0.07431	1.25	1.83711	2.68	0.17931	2.37	0.884	1049.8	25.3	1063.2	27.4	1058.8	48.9	-1.3
Z4_1	0.07845	0.98	2.10867	2.61	0.19496	2.42	0.928	1158.2	19.3	1148.2	30.4	1151.6	54.4	0.9
Z4_3	0.07902	2.15	2.08587	3.10	0.19145	2.23	0.719	1172.6	42.6	1129.2	27.4	1144.2	63.6	3.7
Z5	0.18443	0.50	13.06740	2.15	0.51388	2.09	0.972	2693.1	8.3	2673.2	69.0	2684.5	251.7	0.7
Z6	0.09118	0.38	3.20004	2.04	0.25453	2.01	0.983	1450.4	7.2	1461.8	32.9	1457.2	64.4	-0.8
Z7	0.17321	0.65	11.91198	2.17	0.49879	2.07	0.954	2588.9	10.9	2608.6	66.1	2597.5	233.3	-0.8
Z8_1	0.10043	1.02	4.05298	2.69	0.29270	2.50	0.926	1632.0	18.9	1655.0	46.9	1644.9	105.3	-1.4
Z8_2	0.10058	1.43	4.17610	3.02	0.30112	2.66	0.881	1634.9	26.5	1696.9	51.4	1669.3	120.5	-3.8
Z9_1	0.09266	0.64	3.35563	3.09	0.26266	3.02	0.978	1480.9	12.2	1503.5	51.0	1494.1	100.2	-1.5
Z9_2	0.09317	0.57	3.43032	3.74	0.26702	3.70	0.988	1491.4	10.9	1525.6	63.4	1511.4	122.7	-2.3
Z10_1	0.07613	2.18	1.93045	3.65	0.18390	2.92	0.802	1098.5	43.6	1088.3	34.6	1091.7	69.1	0.9
Z10_2	0.07646	1.37	1.89980	2.95	0.18021	2.61	0.885	1107.1	27.5	1068.1	30.3	1081.0	55.4	3.5
Z11	0.07548	3.92	1.95138	4.77	0.18751	2.72	0.569	1081.2	78.7	1107.9	32.8	1098.9	90.4	-2.5
Z12_1	0.07470	1.77	1.90011	2.99	0.18448	2.42	0.807	1060.5	35.6	1091.4	28.7	1081.1	56.2	-2.9
Z12_2	0.07522	2.56	1.90362	3.64	0.18354	2.58	0.710	1074.5	51.4	1086.3	30.5	1082.4	68.0	-1.1
Z13	0.09179	2.75	3.23822	3.65	0.25586	2.41	0.659	1463.1	52.2	1468.6	39.6	1466.4	113.5	-0.4
Z14_1	0.08769	2.08	2.89385	4.55	0.23935	4.04	0.890	1375.6	39.9	1383.3	62.1	1380.3	125.5	-0.6
Z14_2	0.08670	1.30	2.72605	2.55	0.22803	2.19	0.861	1353.9	25.0	1324.2	32.1	1335.6	68.1	2.2
Z14_3	0.08089	1.09	2.34832	2.58	0.21056	2.33	0.905	1218.7	21.5	1231.8	31.6	1227.0	59.6	-1.1
Z15_1	0.08169	2.96	2.34797	3.57	0.20846	1.99	0.557	1238.1	58.1	1220.6	26.6	1226.9	81.6	1.4

 Table 3. LA-MC-ICPMS U-Pb zircon data, sample JTP-210 (H71800 81350)

Z15_2	0.08082	2.58	2.24091	3.21	0.20111	1.91	0.597	1217.0	50.6	1181.3	24.8	1193.9	70.5	2.9
Z16_2	0.08341	3.74	2.36330	4.82	0.20550	3.04	0.631	1278.7	72.9	1204.8	40.1	1231.6	109.5	5.8
Z17_1	0.11185	0.65	4.91321	2.94	0.31859	2.87	0.975	1829.7	11.8	1782.8	58.6	1804.5	137.0	2.6
Z17_2	0.11252	0.58	5.08026	3.17	0.32744	3.12	0.983	1840.6	10.6	1826.0	65.5	1832.8	151.7	0.8
Z18_1	0.18762	0.46	13.04434	2.33	0.50423	2.28	0.981	2721.4	7.5	2632.0	73.8	2682.9	269.5	3.3
Z18_2	0.18616	0.83	13.23232	3.43	0.51552	3.33	0.970	2708.5	13.7	2680.1	109.6	2696.4	379.9	1.0
Z19_1	0.08140	1.98	2.26152	4.03	0.20150	3.51	0.871	1231.1	38.8	1183.4	45.4	1200.4	88.5	3.9
Z19_2	0.07635	0.95	1.95120	2.52	0.18536	2.33	0.926	1104.2	19.0	1096.2	27.8	1098.9	48.7	0.7
Z20_1	0.09227	1.20	3.21598	3.21	0.25280	2.97	0.927	1472.9	22.8	1452.9	48.3	1461.0	99.7	1.4
Z20_2	0.09272	1.30	3.23719	3.43	0.25322	3.17	0.925	1482.2	24.7	1455.1	51.5	1466.1	106.8	1.8
Z21_1	0.09257	1.23	3.30338	2.39	0.25881	2.04	0.856	1479.1	23.4	1483.8	34.0	1481.9	77.1	-0.3
Z21_2	0.09299	1.16	3.31990	2.43	0.25894	2.13	0.878	1487.6	22.0	1484.4	35.5	1485.7	78.8	0.2
Z22_1	0.08045	2.42	2.23954	3.44	0.20189	2.45	0.712	1208.2	47.6	1185.4	31.8	1193.5	75.4	1.9
Z22_2	0.08083	1.42	2.26128	2.46	0.20289	2.00	0.815	1217.4	28.0	1190.8	26.1	1200.3	54.9	2.2
Z23_1	0.08017	1.30	2.22291	2.32	0.20110	1.92	0.828	1201.2	25.7	1181.2	24.8	1188.3	51.0	1.7
Z24_2	0.07490	3.50	1.88389	4.46	0.18243	2.76	0.619	1065.8	70.4	1080.2	32.4	1075.4	81.9	-1.4
Z25_1	0.07660	1.61	1.98668	2.71	0.18810	2.18	0.804	1110.9	32.2	1111.1	26.3	1111.0	53.2	0.0
Z25_2	0.07782	1.94	2.03587	2.66	0.18975	1.82	0.685	1142.2	38.6	1120.0	22.3	1127.6	53.6	1.9
Z26_1_S	0.18034	0.49	12.57200	2.26	0.50561	2.20	0.976	2656.0	8.2	2637.9	71.4	2648.1	253.8	0.7
Z27_1	0.07851	1.58	2.17117	2.47	0.20057	1.89	0.767	1159.8	31.4	1178.4	24.4	1171.9	53.0	-1.6
Z27_2	0.07952	1.63	2.22062	2.58	0.20254	2.00	0.775	1185.1	32.3	1188.9	26.1	1187.6	56.6	-0.3
Z28_1	0.07900	0.71	2.16761	2.37	0.19900	2.26	0.954	1172.2	14.0	1169.9	28.9	1170.7	50.8	0.2
Z28_2	0.07903	0.53	2.19578	1.96	0.20150	1.89	0.962	1173.0	10.6	1183.4	24.5	1179.7	42.9	-0.9
Z29_1	0.16782	0.85	10.87196	2.40	0.46985	2.25	0.936	2536.0	14.2	2482.9	67.7	2512.2	235.5	2.1
Z30_1	0.17733	0.80	12.75800	2.00	0.52179	1.83	0.916	2628.1	13.3	2706.7	61.4	2661.9	230.7	-3.0
Z31_1	0.23757	0.43	20.47074	2.06	0.62494	2.02	0.979	3103.8	6.8	3129.6	80.9	3113.9	358.0	-0.8
Z31_2	0.23513	0.72	20.12435	1.98	0.62076	1.84	0.930	3087.3	11.6	3112.9	73.1	3097.4	339.9	-0.8
Z31_3	0.23652	0.38	20.28248	2.06	0.62195	2.02	0.982	3096.7	6.1	3117.7	80.6	3104.9	354.4	-0.7
Z32_2	0.07377	2.52	1.89391	3.38	0.18621	2.26	0.667	1035.1	50.9	1100.8	27.0	1079.0	63.0	-6.3
Z33_1	0.13326	0.63	7.15131	2.62	0.38920	2.54	0.970	2141.4	11.1	2119.1	63.4	2130.5	174.1	1.0
Z34_2	0.07274	1.60	1.66934	3.80	0.16644	3.44	0.907	1006.8	32.4	992.5	36.8	996.9	62.4	1.4